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Using the example of the problem of the equilibrium of a plasma cylinder in a helical magnetic field, two approaches to the 
problem of its stability are proposed. The first approach uses the symmetry of the equilibrium configuration. Its model is constructed 
in terms of a boundary-value problem with the Grad-Shafranov equation. The equilibrium is said to be "diffusionally stable" if 
the solution of the problem can be obtained by iterative methods of the relaxation type. The stability is determined by the spectral 
property of the differential operator of the linearized equation. The other approach is the traditional linear theory o[ the MHD- 
stability of equilibrium configurations. After its schematic description, as it applies to a cylinder, it is shown that for both of the 
approaches considered the eigenvalues of the eigenvalue problems for helical harmonies of any small perturbation vanish 
simultaneously. This indicates that the stability boundaries in the range of the parameters of the problem are identical in both 
cases. © 2001 Elsevier Science Ltd. All rights reserved. 

In numerous publications on the mathematical modelling of physical processes, relating to the problem of controlled 
thermonuclear fusion, considerable importance is attached to investigating the stability of the configurations of 
dense hot plasma, confined by a magnetic field ("magnetic traps"). The confinement time is assumed to be long 
on the scale of natural plasma processes, and hence configurations are considered which are in equilibrium. "I~o 
groups of problems are considered: (1) the geometry and physical parameters of the equilibrium configuration 
and (2) the stability of the configuration to perturbations which disturb its equilibrium. In each of these the 
investigations rest on a solution (usually numerical) of problems with the equations of magnetohydrodynamics 
(MHD). 

The structure of plasma systems or their components often possess symmetry (plane, axial or helical). Hence, 
tow-dimensional mathematical models are widely used which can be simplified considerably compared with the 
general case. In two-dimensional equilibrium problems, the system of MHD-equations can be reduced to a single 
scalar Grad-Shafranov equation 

A¥ = g0g) (0.1) 

for the stream function of the magnetic field ~g [1-3]. Here h is the two-dimensional Laplace operator, 
considered in different systems of curvilinear coordinates depending on the type of symmetry. A feature of 
boundary-value problems with Eq. (0.1) is the fact that they can have non-unique solutions. Some of these solutions 
cannot be obtained by iterative methods of the "relaxation" type, i.e. by numerical integration of the evolution 
equation 

~/ l~ t  = A v -  g(V) (0.2) 

It is natural to assume them to be "unstable" in the sense indicated, while, depending on the nature of Eq. (0.2), 
the stability or instability is said to be "diffusionar'. The diagnostics and criteria of diffusional stability use a spectral 
analysis of the differential operator of the linearized equation (0.1) [4-6]. 

The questions of uniqueness and stability touched upon belong to the general theory of semilinear elliptic and 
parabolic equations [7]. In addition to two-dimensional problems of plasma statics [8], they also occur in problems 
of the theory of combustion (of any dimensionality) [9, 10], electrochemistry [11], and when modelling chemical 
processes [12]. The features of localized thermal regimes and regimes with peaking in the quasi-linear theory of 
heat conduction are of the same nature [13]. 

Diffusional stability must be distinguished from the traditionally considered MHD-stability of equilibrium plasma 
configurations with respect to hydrodynamic-type perturbations, including motion. Investigations of MHD-stability 
make up a second group of such problems and are a permanent subject matter in the scientific literature (see, for 
example, [14-19]). It is of interest to establish if there are any interrelations or hierarchy between both types of 
stability. The question is raised in [5, 20] and has no obvious answer. An investigation of the stability in the linear 
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approximation in both cases involves a spectral analysis of differential operators, but of an extremely different 
nature. In the case of MHD three-dimensional perturbations are considered described by a system of equations, 
while the Grad-Shafranov equation and its linearized analogue are scalar and are limited by a two-dimensional 
analysis. 

In this paper we consider this question using the simple example of a one-dimensional equilibrium configuration 
in a plasma cylinder in a helical magnetic field. This example is well known as a straightened model of toroidal 
systems (the tokamak and stellarator). Its MHD-stability has been the subject of numerous investigations (for 
example, [14-18, 21], while the diffusional stability has been considered in [20], in which a number of features and 
tendencies related to the right-hand side g(¥) of Eq. (0.1) are determined. A comparison of the two approaches 
to stability leads to the following results. 

Arbitrary three-dimensional small MHD-perturbations can be represented by a Fourier series, composed of 
helical perturbations. Each of these has a corresponding two-dimensional helical diffusion perturbation, described 
by linearized equation (0.2). The eigenvalue problems connected with these perturbations are different, but they 
are identical in the case of eigenvalues equal to zero. Since the passage of the leading eigenvalue through zero 
give the limit of the stability in the range of the problem parameters, the result obtained indicates that these limits 
are identical for both forms of stability. Hence it follows that ff the configuration is diffusionally stable for all values 
of the helix pitch, specified by the helical symmetry, it is stable for all Fourier harmonics of the MHD-perturbations. 
An investigation of diffusional stability is associated with simpler eigenvalue problems, and this is the practical 
importance of the result formulated. 

Below, in Section 1, we give a schematic description of the two-dimensional model of the equilibrium in terms 
of the Grad-Shafranov equation and we introduce the idea of diffusional stability as it applies to a plasma cylinder 
with a helical field. In Section 2 we reproduce a scheme for investigating MHD-stability in the linear approximation, 
realized in the same cylinder. In Section 3 we compare both forms of stability and we obtain the main results of 
this paper. 

1. T W O - D I M E N S I O N A L  M O D E L  OF E Q U I L I B R I U M .  
" D I F F U S I O N A L  S T A B I L I T Y "  

The equilibrium configuration (i.e. which is at rest) of a dense plasma in a magnetic field is characterized 
by a distribution in space of three physical quantities: the pressurep, the magnetic field strength H and 
the electric current density j. They are related by the MHD-equat ion of  equilibrium 

Vp = j x H (1.1) 

and MaxweU's equations 

V . H = O ,  V × H = j  (1.2) 

The equations are given in dimensionless form: the units of measurement are made up of the quantities 
which participate in the setting of specific problems. 

When there is symmetry (plane, axial or helical) the equations are two-dimensional and the 
mathematical apparatus of  plasma statics is simplified considerably. Equations (1.2) enable us to 
describe the magnetic field and the current in the direction of  two active coordinates using the scalar 
stream functions ~ and L It follows from Eq. (1.1) that the functionsp, ~ and I are pairwise dependent, 
i.e. 

p = p(~g), I = I(~g) (1.3)  

while the function ¥ satisfies the scalar Grad-Shafranov equation (0.1), the specific form of which 
depends on the type of symmetry. For example, the helical symmetry discussed below assumes that the 
configuration depends solely on r and O = to - az, where r, tO and z are cylindrical coordinates, 
o~ = 2~h,  and h is the pitch of the helix of  the coordinate lines. In this case 

3~g 3¥  
rH r  = - ~ ,  H 0 - H~ - ¢xrH z = 3 r  

3 /  3 /  
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while the Grad-Shafranov equation has the form 

A**~ = g(¥, r) 

where 

(1.4) 

l a ( r a y ) +  t a2v v_ l+a2r2 
A**Xg r 2 2 0 2 ,  

_ dp 2ct I dl 
g(~" r)--Tv + 7 /  vd¥ 

The fight-hand side of Eq. (1.4) contains two arbitrary functions (1.3), which describe the pressure 
and electric current distribution between the magnetic surfaces ~(r, O) = const. They must be specified, 
starting from any requirements and wishes to the configuration being considered or on the basis of a 
priori experimental information. The model of the equilibrium configuration is constructed by solving 
the boundary-value problem with Eq. (1.4) in the specified region with specified boundary conditions. 

An extensive literature is devoted to the investigation of plasma configuration in terms of the model 
described (see, for example, [3, 16, 17]). Research on this subject, in which we have participated, is 
summarized in [4, 5]. In these, in particular, attention is drawn to the fact that the first boundary-value 
problem with an equation of the type (0.1) can have non-unique solutions. Some of these cannot, 
generally speaking, be obtained by iterative "time-relaxation" methods, i.e. using the solution of 
Eq. (0.2). For this reason they are said to be "diffusionally unstable". 

We emphasize that stability or instability is not a consequence of the chosen method of solution, but 
an internal property of the problem, which is related to the spectrum of the differential operator of 
the linearized equation 

LIu] = - A u  + ag  u 
bq 

with the condition u = 0 on the boundary of the region. That is, the criterion of the stability of the 
solution ~ of the boundary-value problem with Eq. (0.1) is the inequality ~.1 > 0, where ~q is the first 
(minimum) eigenvalue of the boundary-value problem with operator L 

Ltul = ~ (1.5) 

In fact, the convergence of the relaxation method, i.e. the solution of Eq. (0.2) reaching the steady 
state (0.1), is determined by the behaviour of the error, which is subject to the equation 

Ou/Ot + L[u] = 0 (1.6) 

and decreases or increases with time as exp(-~.lt ). The inverse inequality ~.1 < 0 for any solution ¥ of 
the problem with Eq. (0.1) denotes diffusional instability of this solution and, as a rule, the fact that it 
is non-unique. 

In order to compare diffusional stability with MHD-stability we will consider the example of the one- 
dimensional equilibrium configuration in a plasma cylinder with a helical magnetic field. Equations (1.1) 
and (1.2) have the form 

dH~ H~ dH~r 
~r + Hz dr + = 0 (1.7) r dr 

H, -O, Jr-O; j , = _ d H ~  dH, r 
d r '  L -  rdr (1.8) 

Here, two functions, for example Hz(r), H~0(r), must be known in the segment 0 ~< r ~< 1, while the 
remaining ones are defined by Eqs (1.7) and (1.8). 

This configuration can be regarded as a special case of the two-dimensional one, including it in the 
model with helical symmetry for an arbitrary value of the helical parameter tx. We will introduce the 
stream function ~(r) by the equation 
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H o - H~ -ctrH z = - d ~  I dr 

It satisfies Eq. (1.4), in which 

I = H  =Hz+O~rH~; d p = d p ( d v ~  -I dl = d l ( d v ~ - '  
d~ dr ~, dr J ' d~  dr ~ dr J 

(1.9) 

The two-dimensional helical perturbations of configuration (1.7), (1.8) obey Eq. (1.6), in which the 
coefficients of the operator L are independent of t and O, and hence they can be represented by the 
sum of a series of particular solutions of the form 

u(t, r, O) = e~aeim°u(r) 

while 

I d ( r d u ~ + f m 2 + a g l u  
Ll"]--r~kvd-;) LT" 7V)=~ (1"101 

lu(0) l< oo, u ( l ) = 0  

where g(~, r) is the right-hand side of Eq. (1.4). Differentiating it in the same way as above (formulae 
(1.9)), we have 

vH ° ag dZHo I-3o~2r 2 dH o 2ot2r2Ht dH t 
a-"~ = ~ 4 rv dr rvH 0 dr 

(I + 6~2r 2 - 30~4r4)Ho + 80~3r3Ht 

r2V 2 (1.11) 

The configuration is diffusionally stable if, for any pair of values of m and tx, all ~, > 0. Note that, 
for fixed a, the coefficient ofu in Eq. (1.10) increases as m increases and, consequently, the eigenvalues 
~. increase (see, for example, [22]), improving the stability. Harmonics with number m = 0 (long-wave 
perturbations) are the least stable. Hence, the equilibrium configuration (1.7), (1.8) is stable to any 
two-dimensional helical perturbations if and only if the spectrum of the operator L is positive for 
m = 0 and all possible values of c~. 

2. A SCHEME FOR INVESTIGATING MHD-STABILITY 

We will present a brief scheme for investigating MHD-stability in the linear approximation. Small 
perturbations of Vl,pl and 1-11 of any equilibrium plasma configuration are described by the equations 
of magnetohydrodynamics, linearized in a neighbourhood of the state of rest (1.1), (1.2) 

avi 
P " ~ t  = - V p I + j l x H + j x H t  

apj = aHi 
~t -31PV" VD - Vp.  Vt, " ~ t  = V x (V t x H)  (2.1) 

Differentiating the first equation of (2.1) with respect to t and eliminatingpl and I-I], we obtain a vector 
equation solely in V1 

a2Vt 
p ~-~T- = V('/pV- V I + V p . V l ) + j x ( V x ( V  j x H))+(V x Vx(V t x H))x H - -K[Vl ] 

which is often used in the form 

(2.2) 

p a2~ -K[~I, ~ = J V, dt (2.3) 
as it applies to the small-displacement vector ~. The latter obviously follows from system (2.1) or can 
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be obtained from Eq. (2.2) by integration with respect to t. The form of (2.3) is more convenient when 
interpreting the mechanical meaning of stability: the right-hand side plays the role of a force while the 
quadratic form ~K[~]'~flr is the potential energy of the perturbation. 

The coefficients of the linear operator K depend only on the equilibrium solution, and hence the 
problem with Eq. (2.3) and the boundary conditions, for example, ~ = 0 on the rigid boundary of the 
region, allows of the separation of variables 

~t, r)  = e i ° ~ ( r )  (2.4) 

and is reduced to a boundary-value problem with the equation 

po~j = K[~] (2.5) 

The operator K is sclfadjoint over a wide range of natural boundary conditions, and hence its eigenvalues 
O 2 a r e  real. The equilibrium is stable ff they are all positive; in this case the small displacements (2.4) 
do not increase with time. They are unstable if at least o n e  02 < 0 exists. 

Eigenvalu¢ problems with Eqs (1.5) and (2.5) are not very common. The first is a scalar problem and 
is related to perturbations of dimensionality no higher than two, while the second is a vector problem 
and allows of three-dimensional perturbations. 

As it applies to the one-dimensional equilibrium configuration in a cylinder (1.7), (1.8) considered 
above, Eq. (2.5) allows of a further separation of variables 

~r) = eir~-ikZ~(r)  = e im°~(r)  

where 

Putting 

O=(p-e {z ,  a=klm, ~r)=(~r,i~,i~z ) 

r 

H e = H ~  - otrH z, H I = H z + txrH~ 

we obtain from Eq. (2.5) 

= ro[ ,l+ -T Ho -T + 

m 2 m m2v m ') 
PO)2~= K; (~--mH! (YP+ H2) ~-~r, r+ 2kH2 " ~r +mn, TPTl+ m 2 H2v~ 

r r a r  r r r z 

where 

(2.6) 

a r k  ra r  ) a r k  r ) 

Wc resolve the last two equations of (2.6) for rl and ~ and we substitute the result into the first equation 
of (2.6). The vector boundary-value problem with Eq. (2.5) is then converted into a scalar problem 
[15] 

l d 
r d r  k v  a r  ) 

(2.7) 

where 
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_ $ 2  . . , 2  _ 

r2G(r, co) = m--~22 (n ~ - S) 
r 

4~2H2D ('ypH2-H2S)+rd-~-IH'~9(2H°-vH')+2ff'rHIS'~'D}ar [, Vr- 

po32r 2 
S= ra 2 , D= v377H2 - vpC2r2S + S 2 

Its specific feature is the fact that the eigenvalue to 2 occurs non-linearly in the coefficients F and G. 
One of the possibilities of investigating the MHD-stability of plasma cylinder is to choose co 2 by the 
"shooting" method in a series of numerical solutions of Eq. (2.7) [18]. 

3. THE COMMON LIMIT OF STABILITY 

Eigenvalue problems (1.10) and (2.7), which differ considerably from one another, both relate to 
harmonics of the perturbations (diffusional and MHD) with fixed values of the number m and of the 
helical parameter ct. The conditions for which the least eigenvalues ~, and co 2 vanish correspond to the 
boundaries of both types of stability of these harmonics. 

Equation (2.7) with co 2 = 0 can be simplified considerably. When m ~ 0 it has the form 

r-~r vr dr J Lt r 2 ) - v k " " ~ ) - r ~ r  r 2 vr 2 

and w h e n m = 0 ,  k ~  0 ( a = ~ )  

__)}.=o (3.1) 

r d H~ (kHz)2 - -'7-. _ - 2  - 2  ~rr=O 
dr r dr 

(3.2) 

Putting u = no~r, we obtain from (3.1) 

r dr \ v-~r  j + --~- + Q u=0,  Q-O--~ (3.3) 

Here Q is identical with the expression ~g/~w, defined by (1.11). Hence, Eq. (3.3) is identical with 
Eq. (1.10) when ~. = 0. In the limiting case (3.2) the replacement v = Hz~rr leads to the equation 

r d ( I d u ) +  
- ~rr~,r-d-~r) (k2+a*)v =0 (3.4) 

where 

I d 2 H ~ _  I dH~ 2H,  dH~ 2H~ 

Q*= H--'~ dr 2 rH z dr rH 2 dr r2 Hz2 

which is identical with the Grad-Shafranov equation, linearized on equilibrium (1.7), (1.8), in its 
axisymmetrical version 

_ ~ (I ~ l ) .  ~2~ - r  2 dp - !  di g , (W,r  ) 

Here 

dXF = rHz, l = rH~, Q* = ~g* 
dr ~ 



Two approaches to the stability problem for plasma equilibrium in a cylinder 235 

Finally, the limiting case m = 0, tx ---> ~ ,  Hz =- 0 corresponds to a Z-pinch, the stability of which has 
been exhaustively investigated (see, for example, [14, 17]). 

Hence, the eigenfunctions of both problems (1.10) and (2.7), corresponding to the zeroth eigenvalue, 
satisfy the same equation (3.3) with boundary conditions l u(0) [ < 0% u(1) = 0. This indicates that the 
boundaries of stability in the range of the parameters of the problem are identical in both cases 
considered for each of the perturbation harmonics. 

The case of completely one-dimensional perturbations of the cylinder, m = 0, k = 0, ct = 0, is an 
exception. Here the MHD-stability is unconditional, at least, for values of the adiabatic index 
7 ~< 2. In fact, in this case it follows from Eqs (2.6) that ~ --- ~ - 0, and ~ = ~ satisfies the equation 

The stability follows from the fact that the operator K0 is positive-definite. It can be conveniently rewritten 
in the form 

Using the equilibrium equation (1.7), we obtain 

dp ± dH?  ÷ q = ~ - - +  
r dr  r dr 2 

2 = 2(7 - 1)p + n~ + (2 - 7)p + n~ 

Hence we have 

IKo( ) rar=I [2(v-I)p+n ÷ rar> O 
0 0 v [,dr r )  J 

for any ~ and for y ~< 2 ("the energy principle" or the "energy integral" [14, 17]). 
The diffusional stability of a column to one-dimensional perturbations, as previously, is non-trivial 

(see the examples in [20]). 
The above comparison enables us to draw the following conclusion. In order to ascertain the fact 

of the MHD-stability of an equilibrium plasma configuration in a cylinder with a helical magnetic 
field, it is sufficient to establish the diffusional stability of all the helical perturbation harmonics. This 
means that the spectra of problems (1.10) when rn = 0 and for any values of a must be positive. It 
at least one harmonic is diffusionally unstable, the corresponding boundary will be surmounted in 
the configuration parameters, and that harmonic will be unstable in the traditional hydrodynamic 
sense. 

In conclusion, we draw attention to the fact the eigenvalue problem (1.10), in addition to the obvious 
singularity when r = 0, has one other, namely, when r = re, where Ho(rc) = 0. This corresponds to the 
equality. 

la(r) -- H~ =ct (3.5) 
r n  z 

i.e. to the coincidence of the "twisting angle" kt(r) of the equilibrium magnetic lines of force and the 
helical parameter ix. In other words, the line of force in this case coincides with the coordinate line, 
along which the perturbations of the given harmonic are assumed to be constant (helical symmetry). 
This coincidence is called "resonance", and the cylindrical surface r = r~ is called the resonance surface 
[16]. It is well known that perturbations on a resonance surface are the most dangerous from the point 
of view of stability; examples given in [20] showed instability precisely in the region of resonance. 
Equation (3.3), which participates in both of the approaches to the problem of stability discussed above, 
correctly reflects this fact. 
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